Characterization of mitochondria from pig muscle: higher activity of exo-NADH oxidase in animals suffering from malignant hyperthermia.

نویسندگان

  • U F Rasmussen
  • H N Rasmussen
  • A J Andersen
  • P Fogd Jørgensen
  • B Quistorff
چکیده

Mitochondria were isolated from biopsies of the biceps femoris muscle of Danish landrace pigs. Three groups of animals were compared: (1) normal pigs; (2) pigs that were homozygous with respect to the gene Hal(n)/Hal(n) coding for the porcine malignant hyperthermia syndrome; and (3) heterozygote animals. A newly developed micro-method for preparation and assaying of small quantities of intact mitochondria was employed. With this technique mitochondria from biopsies weighing less than 100 mg were examined with respect to cytochrome content as well as phosphorylating and respiratory activities, including the nonphosphorylating exo-NADH oxidase activity. The mitochondria, prepared in a yield of 48%, showed high respiratory activities with tricarboxylic acid-cycle intermediates and pyruvate, and somewhat lower activity with palmitoyl-carnitine as substrate. The ATP synthase activity was about 1000 micromol ATP/min per g of protein and the maximal respiratory activity approx. 700 micromol of O2/min per g of protein. No differences among the three groups of animals were detected, except for the exo-NADH oxidase activities, which were 43, 78 and 107 micromol of O2/min per g of protein in the groups of normal, heterozygous and homozygous animals respectively. It is concluded that the exo-NADH oxidase activity may be a genetic manifestation of malignant hyperthermia and may play a significant role in the heat production characteristic of the syndrome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The NADH oxidase system (external) of muscle mitochondria and its role in the oxidation of cytoplasmic NADH.

An exo-NADH oxidase system [NADH oxidase system (external)], effecting intact-mitochondrial oxidation of added NADH, was studied in pigeon heart mitochondria. Breast muscle mitochondria showed an equal specific activity of the system. The exo-NADH oxidase activity (200 micron mol of NADH/min per g of protein) equalled two-thirds of the State-3 respiratory activity with malate + pyruvate or one-...

متن کامل

Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity.

Insulin resistance in skeletal muscle in obesity and T2DM is associated with reduced muscle oxidative capacity, reduced expression in nuclear genes responsible for oxidative metabolism, and reduced activity of mitochondrial electron transport chain. The presented study was undertaken to analyze mitochondrial content and mitochondrial enzyme profile in skeletal muscle of sedentary lean individua...

متن کامل

Deficiency of the Reduced Nicotinamide Adenine Dinucleotide Dehydrogenase

A mitochondrial defect was investigated in an infant with fatal congenital lactic acidosis (3-14 mM), high lactate-to-pyruvate ratio, hypotonia, and cardiomyopathy. His sister had died with a similar disorder. Resting oxygen consumption was 150% of controls. Pathological findings included increased numbers of skeletal muscle mitochondria (many with proliferated, concentric cristae), cardiomegal...

متن کامل

Regulation of Alternative Pathway Activity in Plant Mitochondria : Deviations from Q-Pool Behavior during Oxidation of NADH and Quinols.

External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to ...

متن کامل

Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide.

Skeletal muscle sarcoplasmic reticulum (SR) is shown to contain an NADH-dependent oxidase (NOX) that reduces molecular oxygen to generate superoxide. Its activity is coupled to an activation of the Ca2+ release mechanism, as evident by stimulation in the rate of high-affinity ryanodine binding. NOX activity, coupled to the production of superoxide, is not derived from the mitochondria but is SR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 315 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1996